

1ª Jornada

Ganadera

TRÓPICO BAJO

Limitantes de los forrajes tropicales para la producción de carne, y estrategias para corregirlas

Lucas Mari

Médico Veterinario, D.Sc.

Lallemand Animal Nutrition

Fuente: Bill Woodley, 2021, Woodley Dairy Direction, Canada.

Comprendiendo el desarrollo y degradación de la fibra del campo al animal

MORFOLOGÍA

Especies

Madurez

Estructura de la pared celular

Lignificación

PERSONAS

Siembra/Cosecha
Almacenaje/Fermentación
Tamaño de partícula
Inoculantes

Ciclo de Vida de la Fibra

AMBIENT

Suelo/Fertilidad

Estresores (agua, temperatura)

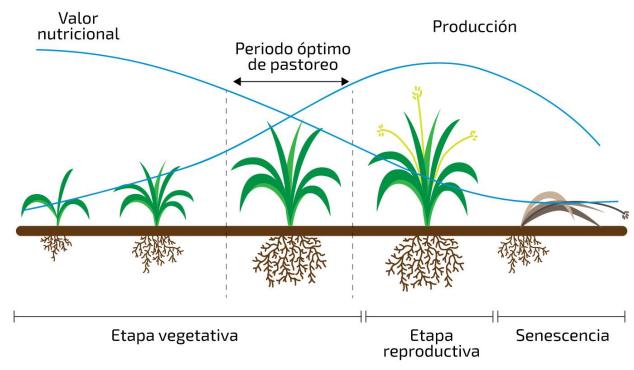
Nutrientes/Fertilizantes

Microorganismos

RUMIANTES

Dinámica ruminal y salud
IMS/Comportamiento
Interacción de ingredientes

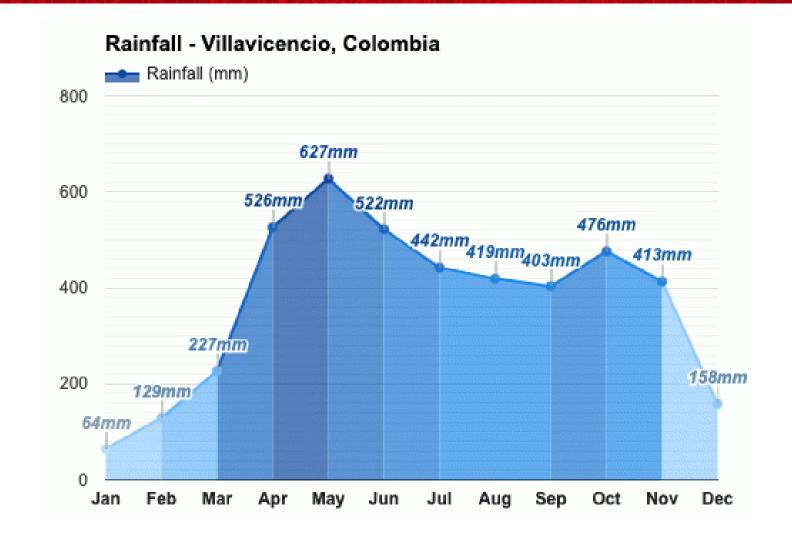
¿Entendemos los "objetivos" de la planta?



La planta está tratando de:

- Sobrevivir;
- Llegar a la madurez reproductiva;
- Producir y proteger semillas viables.

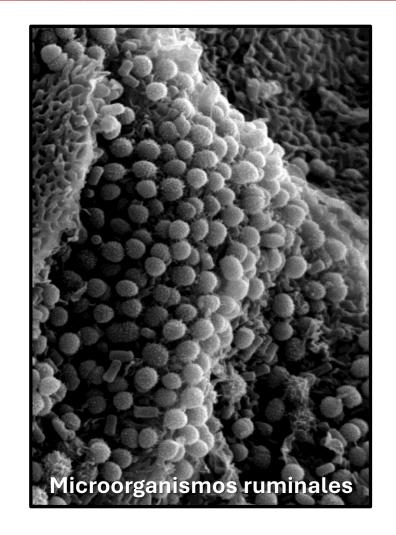
Fuente: Sáenz Fety, 2020.



Fuente: Weather Atlas, 2024.

Precipitación mensual media en Villavicencio

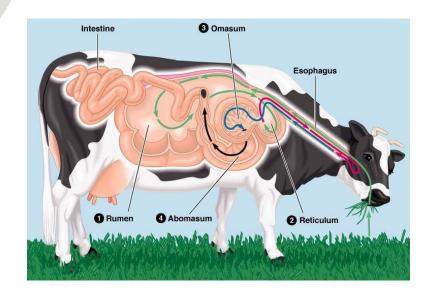
Desbloqueo de la energía de la fibra forrajera

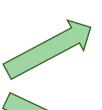


Por qué es importante?

- Rumiantes desempeñan un papel único en la agricultura sostenible a través de su capacidad para usar energía de fuentes de fibra forrajera, sin competir con humanos por sus reservas de alimentos.
- Dentro de la fibra hay una fuente de energía clave (glucosa) que proporciona niveles de energía similares a los del almidón y el azúcar.

Almidón \rightarrow GLU- α (1,4)-GLU Celulosa \rightarrow GLU- β (1,4)-GLU





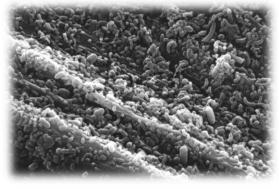
El rumiante depende de la evolución de los cuatro compartimentos del estómago

- El rumen es el compartimento más importante;
- Responsable del 70-80% de la digestión;
- Habitado por una microbiota abundante y diversa.

500 mil millones de microorganismos en una cucharada!

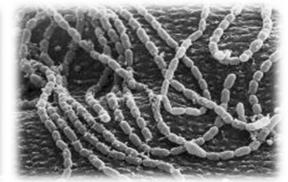
Microbiota ruminal es un ecosistema complejo

Bacterias


10¹¹-10¹² células/mL $< 5 \mu m$ 5000 OTUs


Hongos

10⁴-10⁵ células/mL


10-100 µm

20 especies

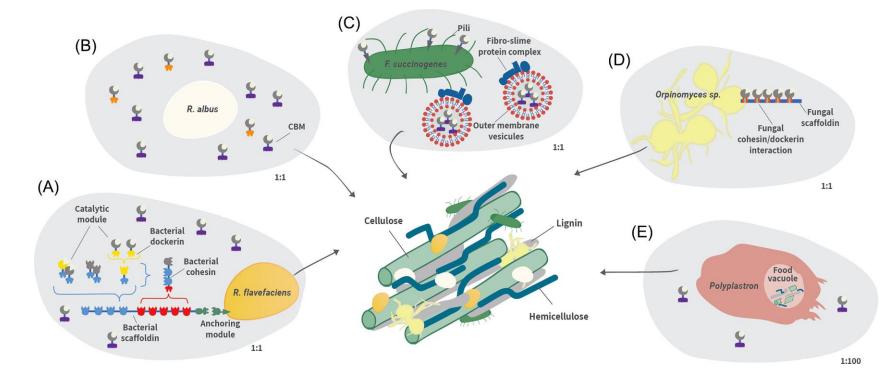
Relación simbiótica con el hospedero

Protozoos

105-106 individuos/mL 50-500 µm 20 especies

Archaea

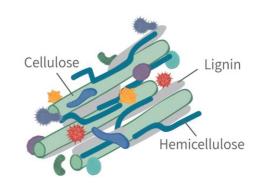
108-109 células/mL $0,5-3 \mu m$ 1000 OTUs



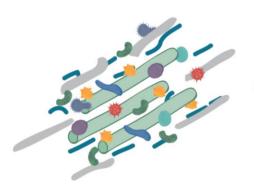
- No hay enzimas específicas para degradación de fibra en los hospederos;
- Población fibrolítica tiene crecimiento lento, y la mayoría es anaeróbica estricta.

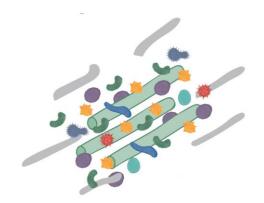
Población fibrolítica

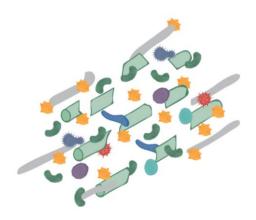
Fuente: Moraïs & Mizrahi, 2019.



Población fibrolítica





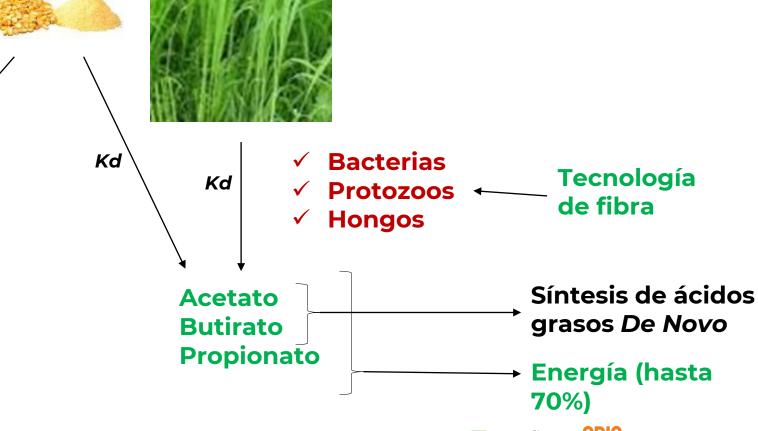

Fuente: Moraïs & Mizrahi, 2019.

Degradación de las regiones amorfas (30 min)

Crecimiento de poblaciones específicas (16 h)

Degradación de las regiones cristalinas (72 h)




Desbloqueo de la energía del forraje: degradación de la fibra ruminal

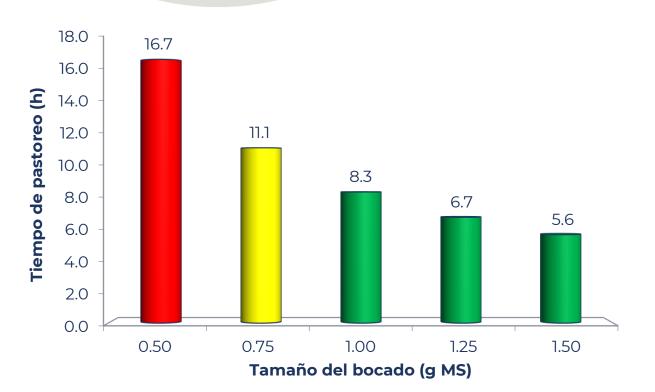
Kd: Tasa de degradación

Kp: Tasa de pasaje

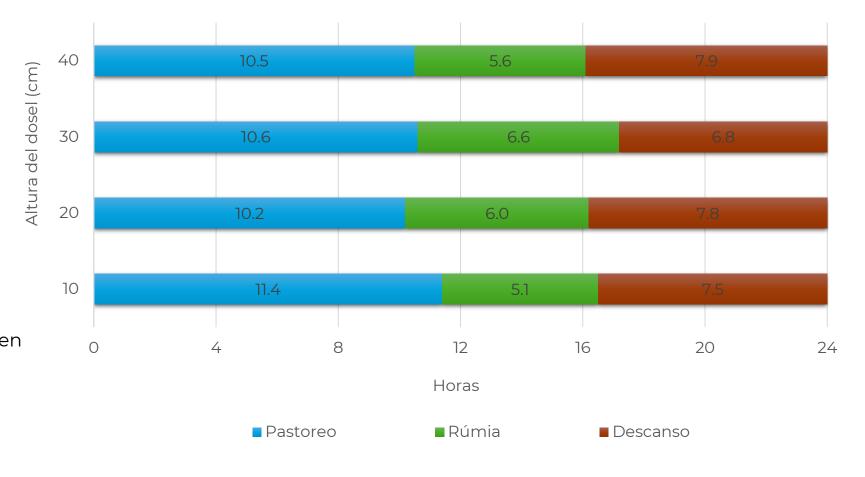
- Dr. Mertens (1987) → 1,2%
 del PV en FDN
- Animal 300 kg
- 300 kg x 1,2% = 3,6 kg MS de FDN
- FDN de la pastura → 60%
- 3,6 kg / 60% = 6 kg MS de pastura

Ingestión en pastoreo

- Ingestión en % del PV = 6 kg
 / 300 kg = 2% (potencial!)
- Bocado → 1 g MS en cantidad
- Animal necesitaría 6.000 bocados
- Cada bocado → 5 seg
- Tiempo total = 30.000 seg o 8,3 horas

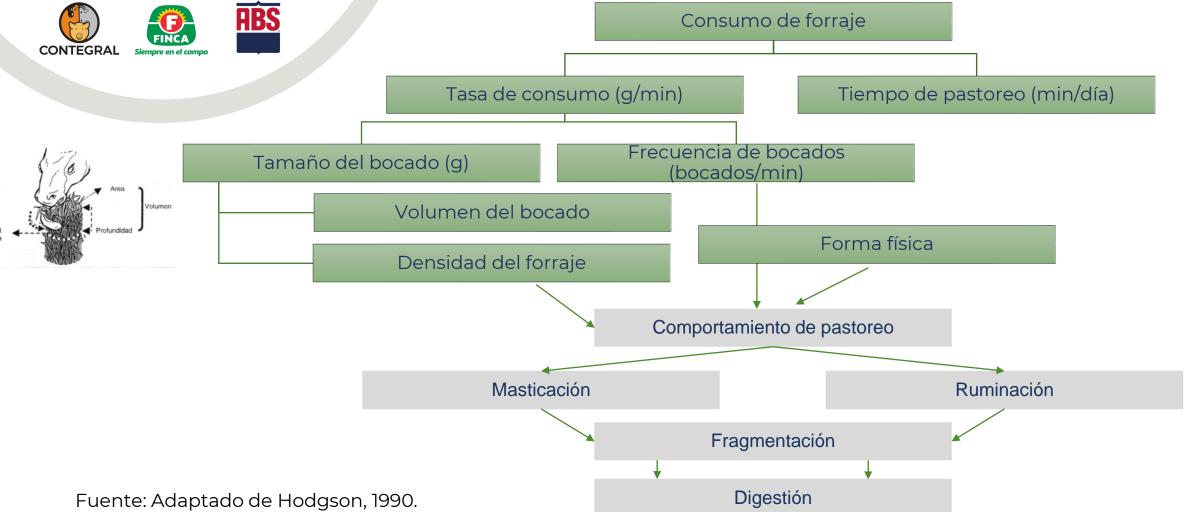



Tiempo de pastoreo

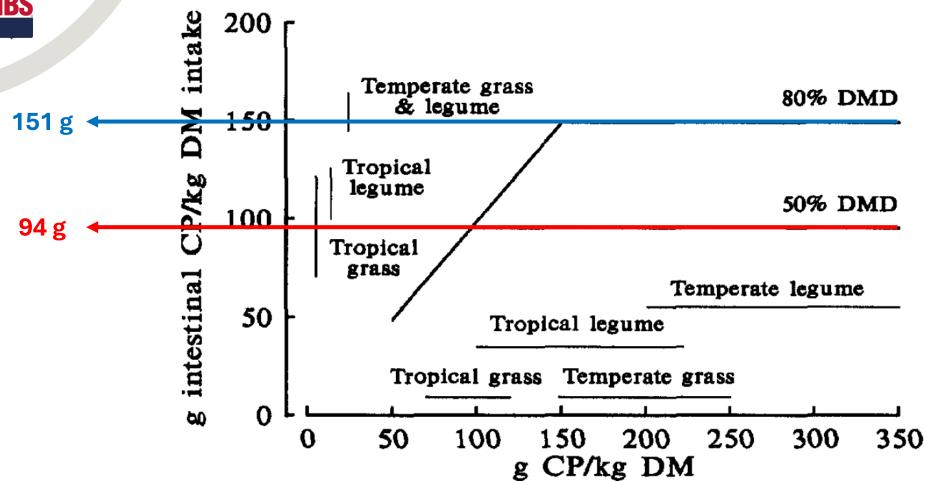


Comportamiento en pastoreo de bovinos en potreros de B. brizantha cv. Marandu, mantenidos en cuatro alturas de dosel forrajero. Fuente: Sarmento, 2003.

Comportamiento de consumo x altura del pasto



Ingestión en pastoreo



Fuente: Poppi & McLennan, 1995.

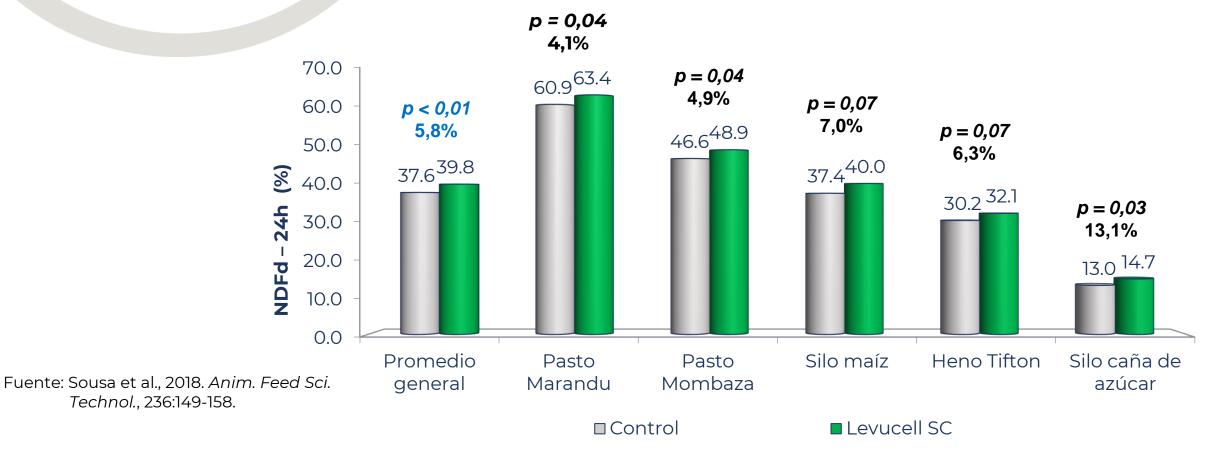


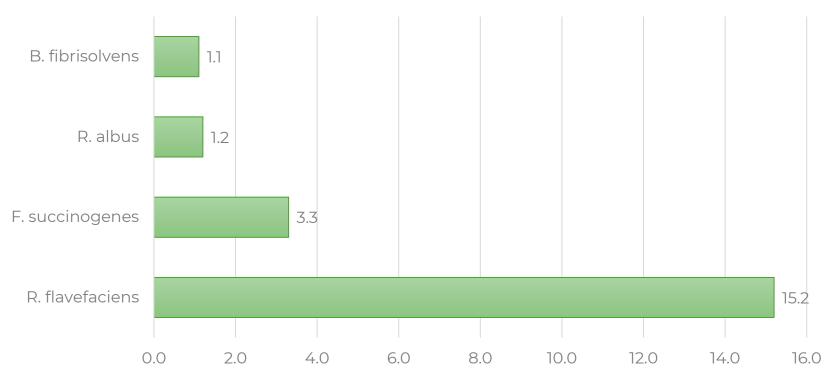
UNIVERSIDADE DE SÃO PAULO

FACULDADE DE MEDICINA VETERINÁRIA E ZOOTECNIA

DEPARTAMENTO DE NUTRIÇÃO E PRODUÇÃO ANIMAL

Effect of supplementing with Saccharomyces cerevisiae
CNCM I-1077 on fiber digestibility and rumen ecosystem
of grazing cattle with different forage quality





Población relativa frente al grupo Control (multiplicación)

Fuente: Sousa et al., 2018. *Anim. Feed Sci. Technol.*, 236:149-158.

Fuente: Tesis de Maestría de Amanda Poppi.

Efecto de *Saccharomyces cerevisiae* CNCM I-1077 sobre la digestibilidad de la fibra

STATE UNIVERSITY OF MARINGÁ AGRICULTURAL SCIENCES CENTER

EFFECT OF SACCHAROMYCES CEREVISIAE STRAIN CNCM I-1077 ON THE RUMINAL DEGRADABILITY OF FORAGES FROM SOUTH AMERICA

> Author: Amanda Camila de Oliveira Poppi Supervisor: Prof. Dr. João Luiz Pratti Daniel

MARINGÁ State of Paraná April – 2019

Table 1. List of forages sampled in the South America

D	Family	C3/C4	Forage	Scientific name	Conservation	Local	State	Country
A	Legume	C4	Alfalfa	Medicago sativa	Hay	Lunardelli	PR.	Brazil
В	Legume	C4	Alfalfa	Medicago sativa	Silage	Castro	PR.	Brazil
С	Grass	C4	Com	Zea mays	Silage	Saladillo	Buenos Aires	Argentina
D	Grass	C4	Corn	Zea mays	Silage	Castro	PR.	Brazil
E	Grass	C4	Com	Zea mays	Silage	Bela Vista de Goiás	GO	Brazil
F	Grass	C4	Corn	Zea mays	Silage	Mandaguaçu	PR	Brazil
G	Grass	C4	Corn	Zea mays	Silage	Arequipa	Arequipa	Penu
Н	Grass	C4	Kikuyu	Pennisetum clandestinum		Ubaté	Cundinamarca	Colombia
I	Grass	C3	Oat	Avena sativa	Silage	Arapoti	PR	Brazil
J	Grass	C3	Oat	Avena sativa	Silage	Castro	PR	Brazil
K	Grass	C3	Ryegrass	Lolium multiflorum	Silage	Castro	PR	Brazil
L	Grass	C3	Ryegrass 2	Lolium multiflorum	Silage	Castro	PR	Brazil
М	Grass	C4	Sugarcane	Saccharum officinarum	Silage	Nova Andradina	MS	Brazil
N	Grass	C4	Sugarcane	Saccharum officinarum	Silage	Agudos	SP	Brazil
0	Grass	C4	Tropical grass	Panicum maximum cv. Mombaça	Silage	São Miguel do Aragaia	GO	Brazil
P	Grass	C4	Tropical grass	Panicum maximum cv. Mombaça	Silage	Terenos	MS	Brazil

Fuente: Tesis de Maestría de Amanda Poppi.

Efecto de *Saccharomyces cerevisiae* CNCM I-1077 sobre la digestibilidad de la fibra

Table 6. Effect of live yeast on the ruminal degradability of forage NDF

	Treatment			P-value ³		
$Item^1$	Control	Yeast	SEM ²	Т	F	T×F
Fraction C of NDF (%)	41.0	38.8	0.51	<0.01	<0.01	0.97
Fraction B of NDF (%)	56.1	57.9	0.61	<0.01	<0.01	0.49
kd of fraction B of NDF (%/h)	2.84	2.80	0.17	0.73	<0.01	0.41
ED1.5 of NDF (%)	39.1	40.1	1.10	0.22	<0.01	0.96
ED3 of NDF (%)	29.9	30.6	1.05	0.34	<0.01	0.91
ED4.5 of NDF (%)	24.5	25.1	0.95	0.38	<0.01	0.86
DegNDF12 (%)	14.4	15.8	0.99	0.08	<0.01	0.99
DegNDF24 (%)	25.2	27.8	1.61	0.03	<0.01	0.94
DegNDF36 (%)	38.7	38.6	1.88	0.96	<0.01	0.35

Fuente: Tesis de Maestría de Amanda Poppi.

Efecto de Saccharomyces cerevisiae CNCM I-1077 sobre la digestibilidad de la fibra

Forraje	Control	S. cerevisiae	Mejoría	Promedio
Heno alfalfa (Lunardelli, PR)	33.20	37.32	12.4%	35.45
Silaje alfalfa (Castro, PR)	28.36	31.84	12.3%	30.26
Silaje maíz (Argentina)	23.08	28.97	25.5%	26.29
Silaje maíz (Castro, PR)	24.10	25.98	7.8%	25.13
Silaje maíz (Bela Vista de Goiás, GO)	19.61	21.85	11.4%	20.86
Silaje maíz (Mandaguaçu, PR)	14.81	19.85	34.0%	17.56
Silaje maíz (Perú)	25.66	29.13	13.5%	27.55
Pasto kikuyu (Colombia)	38.34	40.52	5.7%	39.53
Henolaje avena (Arapoti, PR)	29.26	35.12	20.0%	32.46
Henolaje avena (Castro, PR)	17.61	20.71	17.6%	19.30
Henolaje ryegrass 1 (Castro, PR)	35.99	41.92	16.5%	39.22
Henolaje ryegrass 2 (Castro, PR)	40.97	46.25	12.9%	43.61
Silaje caña de azúcar (Nova Andradina, MS)	16.00	17.65	10.3%	16.90
Silaje caña de azúcar (Agudos, SP)	11.12	13.08	17.6%	12.19
Silaje Guinea (São Miguel, GO)	16.01	17.78	11.1%	16.98
Silaje Guinea (Terenos, MS)	19.02	20.79	9.31%	19.90

Consideraciones finales

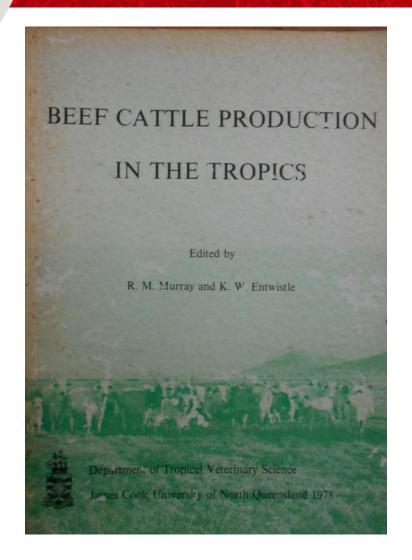
- Hay factores nutricionales y no nutricionales que determinan el consumo del pasto;
- Evaluación del comportamiento explica desempeños bajos y no es considerado;
- Estructura del pasto determina patrones de consumo y desempeño

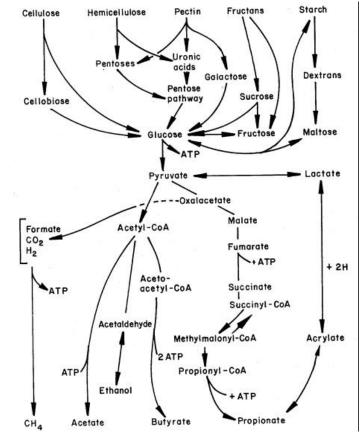
Gracias y que aprovechen el evento!

Lucas Mari

ljmari@lallemand.com

+ 55 (62) 99632 6402





Fuente: Van Soest, 1994.

